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SUMNARY 

Noise and economic cha rac t e r i s t i c s  w e r e  obtained f o r  an advanced supersonic 
t ranspor t  concept that u t i l i z e d  wing-body blending, a double-bypass variable-cycle 
engirie, superp las t ica l ly  formed and diffusion-bonded titanium i n  both the primary and 
secondary s t ruc ture ,  and an a l t e rna t ive  i n t e r i o r  arrangement tha t  provides increased 
seat ing capacity. The configuration has a c ru ise  Mach number of 2.62, provisions f o r  
290 passengers, a mission range of 8.19 Mm (4423 nomi.), and an average operating 
cruise  l i f t -drag  r a t i o  of 9.23. 

Advanced operating procedures, which have the po ten t i a l  t o  reduce a i rpor t -  
community noise, were explored by using a simulator, Traded je t  noise leve ls  of 
105.7 and 103.4 EJ?NdB w e r e  obtained by using standard and advanced takeoff opera- 
t i ona l  procedures, respectively.  A new method f o r  predict ing l a t e r a l  a t tenuat ion w a s  
u t i l i z e d  i n  obtaining these j e t  noise levels.  Therefore, i f  j e t  noise is  considered 
representative of t o t a l  noise, it appears t h a t  a supersonic t ransport  could achieve 
the noise leve ls  required by Federal Aviation Regulations, p a r t  36, s tage 2. D i r e c t  
and t o t a l  operating costs w e r e  calculated.  Total operating cos t  of approximately 
5.5 cents/passenger-km ( I O  cents/passenger-n.mi.) and a f u e l  eff ic iency of 
16.4 seat-km/L (33.6 seat-n.mi./gal) w e r e  predicted f o r  the design range and a load 
fac tor  of 100 percent. 

INTRODUCTION 

The current  high t i c k e t  p r ice  f o r  a supersonic crossing of the Atlant ic  c l e a r l y  
points t o  the need fo r  technical  breakthroughs i n  order fo r  future  supersonic trans- 
ports t o  be cost-effective.  Over the last  decade, both industry and NASA have con- 
ducted several  advanced supersonic technology in tegra t ion  s tudies  t o  evaluate the 
poten t ia l  of. s ign i f i can t  advances i n  various d isc ip l ines  (refs, I to 7).  A success- 
f u l  supersonic t ransport  would have t o  be acceptable both economically and environ- 
mentally, The most cr i t ical  environmental i s s u e  facing supersonic a i r c r a f t  is com- 
munity s e n s i t i v i t y  t o  a i r p o r t  noise. A t  the present t i m e ,  a Federal Aviation Noise 
Regulation has not been adopted for supersonic aircraft, It is ant ic ipated,  however, 
that the communities would resist any exceptions t o  the subsonic regulations. 

For several  years, government and industry have conducted research i n  order t o  
develop an understanding of j e t  noise, concepts fo r  i ts  reduction, and practical 
means fo r  suppressor implementation. Coannular nozzles, mechanical suppressors, and 
thermal acoust ic  sh ie lds  have been explored as p a r t  of the e f f o r t  t o  reduce the noise 
of supersonic t ransports  ( r e f s .  8 t o  IO). Advanced a i r c r a f t  operating procedures 
o f f e r  yet  another means of reducing airport-community noise ( r e f s .  11 and 12)  . The 
advanced takeoff procedures involve automated th rus t  modulation a f t e r  l i f t -o f f  and 
during climbout and a reduction i n  th rus t  l eve ls  b e l o w  those presently allowed. The 
advanced landing procedures involve decelerat ing approaches and constant g l ide  
slopes. 

The Langley Visual/Motion Simulator ( r e f ,  12)  and a NASA Aircraf t  Noise Pre- 
d ic t ion  Program ( re f .  13) w e r e  u t i l i z e d  i n  order t o  evaluate the noise character-  
istics of an advanced supersonic t ransport  concept by using standard and advanced 
operational procedures. 



A s ign i f i can t  fac tor  a f fec t ing  the community noise around a i rpo r t s  is the 
lateral at tenuat ion of a i r c r a f t  noise. Recently, the Society of Automotive Engineers 
(SAE) Aircraf t  Noise C o m m i t t e e  has col lected a l l  the ava i lab le  data  on lateral at ten-  
uation of a i r c r a f t  noise and has developed a new method f o r  its prediction during 
takeoff and landing ( re f .  14). This method has been used i n  predict ing the noise 
cha rac t e r i s t i c s  of the subject configuration and the r e s u l t s  are compared with the 
Chien-Soroka method ( re f  . 15) , which has previously been the generally accepted 
standard method f o r  predict ing lateral attenuation. 

An a i r l i n e  evaluates the profit-making po ten t i a l  of any a i r c r a f t  which it con- 
s ide r s  fo r  incorporation i n t o  its f l e e t .  D i r e c t  and total  operating costs  are 
important parameters i n  determining the profit-making capabi l i ty  of any a i r c r a f t .  
E s t i m a t e s  of these cos ts  w e r e  calculated as a function of range and load fac tor  f o r  
the advanced t ranspor t  configuration addressed i n  t h i s  study. 

The purpose of t h i s  repor t  is to  document the predicted noise and economic 
cha rac t e r i s t i c s  of an advanced supersonic t ransport  concept and assess advanced 
operating procedures for noise control.  

SYMBOLS 

EPNL e f f ec t ive  perceived noise level ,  dB 

I AS indicated airspeed 

M Mach number 

V airspeed , knots 

climb speed, knots 

a i r c r a f t  veloci ty  a t  rotat ion,  knots 

a i r c r a f t  veloci ty  a t  obstacle,  knots 

VC 

vR 

v2 

Y f l ight-path angle , deg 

trail ing-edge f l a p  def lec t ion ,  deg Sf 

CONFIGURATION DESCRIPTION 

The supersonic t ransport  concept used i n  this study is documented i n  d e t a i l  i n  
references 16 and 17. Advanced l eve l  technology i t e m s  included i n  t h i s  concept con- 
s i s t e d  of wing-body blending, a double-bypass variable-cycle engine, superp las t ica l ly  
formed and diffusion-bonded titanium i n  both the primary and secondary s t ruc tures ,  
and an a l t e rna t ive  i n t e r i o r  arrangement t h a t  provides increased seat ing capacity.  

Designed for  a c ru i se  Mach number of 2.62 and a mission range of 8.19 Mm 
( 4423 n.mi . ) , the configuration has an average operating c ru ise  l i f  t-drag r a t i o  of 
9.23 and could accommodate 290 passengers. Aerodynamic performance up to a Mach 
number of 1.7 w a s  based on values derived from an ex i s t ing  data  base on s imi la r  con- 
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f igura t ions .  High-speed aerodynamic performance for  Mach numbers from 1.7 to  2.7 w a s  
derived from recent  tests i n  the Langley Unitary Plan Wind Tunnel on blended wing- 
fuselage configurations.  

Technology projected t o  be ava i lab le  i n  1985 w a s  encompassed i n  the  double- 
bypass variable-cycle engine. The engine has a design ove ra l l  pressure r a t i o  of 
13.5, a bypass r a t i o  of 0.25, and a low-temperature (1331 K) augmenter. The i n l e t  is 
an axisymmetric, mixed compression design with a t r a n s l a t i n g  centerbody. The exhaust 
system cons is t s  of an inverted ve loc i ty  p ro f i l e ,  coannular t r a n s l a t i n g  plug with a 
20-shallow-chute mechanical sound suppressor i n  the  outer  s t r e a m .  Based on model- 
scale f r ee - j e t  experiments, the  suppressor is expected t o  provide 4 EPNdB of sup- 
pression a t  a l l  conditions ( r e f .  18) .  

An improved version of the  computer program of reference 19 was used f o r  the  
s iz ing,  configuration se lec t ion ,  and determination of mission performance character-  
istics. A sketch of t he  configuration and per t inent  cha rac t e r i s t i c s  are presented i n  
f igure  1 and t a b l e  I, respect ively.  Pr incipal  design c h a r a c t e r i s t i c s  of the  config- 
ura t ion  a r e  a takeoff gross weight of 2.85 MN (640 000 l b f ) ;  a sea- level-s ta t ic  
i n s t a l l ed  thrust-weight r a t i o  of 0.30; and a wing loading of 3.64 kPa (76 l b f / f t 2 ) .  

TESTS AND PROCEDURE3 

Simulator Description 

Studies  of t h e  noise  r e s u l t i n g  from standard and advanced takeoff and landing 
procedures w e r e  made by using the  general-purpose cockpit of the  Langley Visual/ 
Motion Simulator (VMS) . The VMS is a ground-based motion simulator with s i x  degrees 
of freedom. For t h i s  study, it had a transport-type cockpit  which was equipped with 
conventional f l i g h t  and engine-thrust controls  and with a f l i g h t  instrument display 
representat ive of those found i n  current t ranspor t s  ( f ig .  2)  Control forces  on t h e  
wheel, column, and rudder pedals w e r e  provided by a hydraulic system coupled with an 
analog computkr. The system allows for  the  usual variable-f eel cha rac t e r i s t i c s  of 
s t i f f n e s s ,  damping, coulomb f r i c t i o n ,  breakout forces ,  detents ,  and inertia.  A more 
detailed descr ipt ion of the  simulator is documented i n  reference 12. A constant 
weight of 2.85 MN (640 000 l b f )  and 1.71 MN (384 665 l b f )  w a s  used f o r  takeoff and 
landing, respec t ive ly  . 

Operating Procedures 

The term "standard procedures" r e f e r s  t o  those procedures t h a t  adhere t o  a l l  
present  Federal Aviation Regulations, whereas the  term "advanced procedures" r e f e r s  
t o  procedures t h a t  do not adhere t o  a l l  the  regulat ions required by a i r c r a f t  noise  
c e r t i f i c a t i o n  rules.  Two standard and four advanced takeoff procedures w e r e  inves t i -  
gated. Table I1 presents  the  a i r c r a f t  ve loc i ty  a t  ro t a t ion ,  climb speeds, t h r u s t  
cutback leve ls ,  a u t o t h r o t t l e  usage, and trail ing-edge f l a p  def lec t ion  for  t he  
standard and advanced operating procedures. In order t o  evaluate the  f l i g h t  s a fe ty  
of the  advanced procedures, an engineer test p i l o t  pa r t i c ipa t ed  i n  t he  simulation 
program. 
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Standard takeoff procedures.- The p i l o t i n g  procedures used f o r  the standard case 
w e r e  as follows: 

Accelerate from brake release t o  vR 
A t  VR, rotate the a i rp lane  a t  an angular ro t a t ion  rate of 3 deg/sec to an 

i n i t i a l  angle of a t tack  and maintain that angle u n t i l  v2 is achieved 

After a t t a i n i n g  V2, accelerate to  and maintain climb speed a t  e i t h e r  
v2 + 10 = 223 knots 
(standard procedure I1 ) 

(IAS) (standard procedure I) or 250 knots (IAS) 

Upon a t t a i n i n g  the designated cutback poin t  5.49 kin (18 000 f t )  from 
brake release, reduce the ne t  t h r u s t  to  a spec i f ied  l eve l  as the climb 
gradien t  is  reduced to  4 percent ( y  = 2,3O) 

Procedures used t o  determine the allowable minimum and maximum ro ta t ion  speeds are 
defined i n  reference 20. A climb speed of V + 10 knots (IAS) w a s  used because 
it is the minimum required speed during takeozf noise tests, and a climb speed of 
250 knots (IAS) w a s  used because it is the maximum allowed speed b e l o w  an a l t i t u d e  
of 3.05 km (10 000 f t ) .  The amount of allowable t h r u s t  cutback w a s  l imited to  the  
c r i t e r i o n  of reference 21, which states that takeoff t h r u s t  may not be reduced below 
t h a t  needed t o  maintain l eve l  f l i g h t  w i t h  three engines operating (one engine inoper- 
a t i v e )  or  to  maintain a 4-percent climb gradien t  with four engines operating, which- 
ever power or t h r u s t  is grea te r .  Figure 3 presents  the  allowable t h r u s t  cutbacks f o r  
these two conditions,  The three-engine-operating, zero-climb gradient  requires  the 
highest  t h r u s t  l eve l  and, therefore ,  w a s  used to determine the allowable t h r u s t  
cutback leve ls  of 60 percent and 53 percent f o r  the climb speeds of 
and 250 knots, respect ively.  

V2 + 10 = 223 

Advanced takeoff procedures.- The regulat ions that w e r e  subjec t  to  deviat ion 
during the advanced procedure study are as follows: 

A const'ant takeoff configuration must be maintained throughout the takeoff 
noise test, except t h a t  the landing gear may be r e t r ac t ed  

Takeoff power o r  t h r u s t  must be used from the s t a r t  of takeoff r o l l  to 
an a l t i t u d e  above the runway of a t  least 213 m (700 f t )  

Upon reaching an a l t i t u d e  of 213 m (700 f t )  or grea te r ,  the takeoff power 
or t h r u s t  may not be reduced below that needed to maintain l eve l  f l i g h t  
with one engine inoperat ive or  to  maintain a 4-percent climb gradient  
with four engines operating, whichever power or t h r u s t  is greater 

The advanced takeoff procedures used i n  this study to  evaluate  minimum flyover  
EPNL's are designated advanced procedures I and 11. Advanced procedures I and I1 are 
similar t o  standard procedures I and 11, respect ively,  except that the au to th ro t t l e ,  
which w a s  ac t iva ted  a t  the flyover cutback point ,  w a s  used to maintain the des i red  
climb speeds. The advanced procedures used i n  t h i s  study to evaluate  minimum s i d e l i n e  
EPNL's are designated advanced procedures I11 and IV, For advanced procedures 111 
and IV, ne t  t h r u s t  w a s  reduced to  approximately 84 percent  a f t e r  a t t a i n i n g  
the au to th ro t t l e  w a s  ac t iva ted  a t  the flyover cutback point ;  f o r  advanced procedure VI, 
the  f l aps  w e r e  ra i sed  to  loQ a f t e r  a t t a i n i n g  
the ne t  t h rus t  l eve ls  a f t e r  the flyover cutback poin t  were momentarily below the FAR-36 

V2, and 

For these four advanced procedures, v2' 
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spec i f ica t ions  ( r e f .  21) ;  however, climb-speed and climb-gradient spec i f ica t ions  
w e r e  s a t i s f i e d .  

Landing approaches.- Reference 20 states t h a t  a constant airspeed, constant 
configuration, and constant g l ide  angle (3O f 0.5O) must be maintained throughout the  
landing approach noise test. During this simulation study, landing approaches w e r e  
made a t  a constant speed of 156 knots ( I A S )  on a constant 3O g l ide  angle (standard 
procedure), and a decelerat ing speed on a constant 3O g l ide  angle (advanced pro- 
cedure). For the decelerat ing approach, the airspeed varied from 200 knots ( I A S )  
smoothly down to 156 knots ( I A S ) .  The deceleration w a s  i n i t i a t e d  a t  the outer marker 
(approximately 8149 m (26 735 f t )  from the runway threshold) and w a s  completed a t  the 
noise measuring s t a t i o n  shown i n  f igure 4. It should be noted t h a t  speed brakes w e r e  
used during the simulated decelerat ing approaches. 

RESULTS AND DISCUSSION 

Noise Character is t ics  

Noise predict ion methods.- By using the takeoff and landing p ro f i l e s  generated 
with the simulator, the noise cha rac t e r i s t i c s  of the subject configuration w e r e  cal- 
culated a t  the three measuring s t a t ions  prescribed i n  reference 21 and indicated i n  
f igure 4. N o i s e  predict ions w e r e  made with a NASA Aircraf t  Noise Prediction Program 
(ANOPP). (See ref. 13.) This program uses time-dependent t ra jec tory  and engine data  
to  predic t  the time-dependent one-third-octave-band spectra  a t  a set of observer 
posi t ions.  These spectra  are then integrated t o  obtain e f f ec t ive  perceived noise 
leve Is e 

The program includes noise predict ion modules f o r  j e t  mixing, j e t  shock-cell, 
fan, core, turbine,  and airframe noise. Total noise was calculated i n  terms of 
e f f ec t ive  perceived noise level.  The methodology used i n  t h i s  program has been 
adopted by the In te rna t iona l  C iv i l  Aviation Organizations ( I C A O )  Civ i l  Ai rcraf t  Noise 
Committee as a "Reference Prediction Procedure' and has served as a common denom- 
ina tor  f o r  parametric s tud ies  and noise calculat ions car r ied  out f o r  the Committee. 
It  should be'noted, however, t h a t  fur ther  research is required and is  underway t o  
more accurately pred ic t  shock-cell, fan, and turbine noise (ref . 13) e In addi t ion,  
variable-cycle engine concepts allow for  t a i lo r ing  the i n l e t  and exhaust flows, and 
i f  these cha rac t e r i s t i c s  are u t i l i z e d  properly, fan and shock-cell noise could be 
markedly reduced ( r e f .  22) and jet-only noise would be representat ive of the t o t a l  
noise. Therefore, the discussion of noise leve ls  fo r  the subject  configuration w i l l  
primarily be based on the jet-only noise data. 

A s ign i f i can t  f ac to r  i n  ca lcu la t ing  the community noise exposure around a i rpo r t s  
is the lateral at tenuat ion of a i r c r a f t  noise. Until  recent ly ,  the only large da t a  
base avai lable  was  ground-to-ground propagation data  (ref . 23) : there w e r e  very 
l i t t l e  air-to-ground data avai lable .  The Chien-Soroka method (ref . 151, which has 
been the standard f o r  predict ing lateral attenuation, w a s  developed based on these 
data. Recently, a series of f l i g h t  tests w e r e  conducted i n  order to obtain needed 
air-to-ground da ta  ( re fs .  24 and 25). The Society of Automotive Engineers (SAE) 
Aircraf t  Noise Committee has col lected these r e s u l t s  along with other avai lable  da ta  
on lateral at tenuat ion of a i r c r a f t  noise and developed a new prediction method 
( re f .  14). This method has been used i n  predict ing the noise cha rac t e r i s t i c s  of the 
subjec t  configuration and the r e s u l t s  are compared with noise levels  obtained with 
the Chien-Soroka method. 
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N o i s e  levels.- Figure 5 shows the  thrus t ,  airspeed, and a l t i t u d e  as a function 
of distance from brake release f o r  the standard and advanced takeoff procedures t h a t  
w e r e  flown with the  simulator and the  s ide l ine  and flyover jet noise leve ls  r e su l t i ng  
from these procedures. It can be seen t h a t  the s ide l ine  noise leve ls  obtained with 
the  SAE lateral at tenuat ion method are approximately 4 t o  6 EPNdB lower than those 
obtained with the  Chien-Soroka method. For the  slower takeoffs ,  the a l t i t u d e  over 
the  flyover monitor was higher and consequently the flyover noise w a s  approximately 
2 EPNdB lower. Compared with the  standard takeoff procedures ( f ig .  5 ( a ) ) ,  net  t h r u s t  
reductions below those allowed by FAR-36 spec i f ica t ions  a t  t h e  flyover cutback point 
resul ted i n  lower flyover noise leve ls  ( f ig .  5 ( b ) ) ,  and t h i s  procedure coupled with 
net  t h r u s t  reductions a f t e r  a t t a in ing  resu l ted  i n  reduced flyover and s ide l ine  
noise ( f ig .  5 ( c ) ) ,  

V2 

A comparison of the takeoff noise leve ls  f o r  the various procedures is shown i n  
table  111. Total  noise ( a l l  sources) and je t  noise only are shown. Differences 
between the total  no i se  and j e t  noise only range from 2,6 t o  4.8 EPNdB f o r  flyover 
noise and from 1.1 t o  2.1 EPNdB f o r  s ide l ine  noise, depending on the takeoff pro- 
cedure. A comparison of the r e s u l t s  fo r  standard procedure I and advanced proce- 
dure I11 shows t h a t  advanced operating procedures could r e s u l t  i n  reductions of 
approximately 3 EPNdB and 2 EPNdB i n  flyover and s ide l ine  j e t  noise, respectively.  
I t  should be noted t h a t  i f  only j e t  noise is considered and lateral at tenuat ion is  
predicted by the SAE method, standard procedure I and a l l  the advanced takeoff 
procedures meet the FAR-36 stage-2 takeoff noise requirement of 108 EPNdB. 

The standard landing approach EPNL (from a l l  sources) calculated fo r  a constant 
indicated airspeed of 156 knots, a constant configuration, and a constant g l ide  angle 
of 3O w a s  109.2 dB a t  the  measuring s t a t ion ,  which is 2000 m (6562 f t )  from the  
threshold, on the extended center l ine  of the runway. (See f ig .  4.) However, t he  
to ta l  approach noise minus the  noise contribution of t h e  fan was calculated t o  be 
10 1.9 EPNdB. Therefore, indicat ions a re  tha t  i f  fan noise is markedly reduced, t he  
approach noise, using standard procedures, would m e e t  t he  FAR-36 stage-2 requirement 
Of 108 EPNdB. 

When the  airplane w a s  decelerated from 200 t o  156 knots (IAS), t he  calculated 
approach jet noise was 2.5 EPNdB less than when the a i rp lane  w a s  flown a t  a constant 
speed of 156 knots ( I A S )  with a constant configuration (speed brakes w e r e  not 
used). Time h i s t o r i e s  of t h rus t  ind ica te  tha t ,  a t  dis tances  from the runway 
threshold greater than the  noise measuring s ta t ion ,  less th rus t  w a s  required f o r  the 
decelerating approach than f o r  the  standard approach: t h i s  ind ica tes  t h a t  the  areas 
of the  landing approach noise contours would be reduced. 

N o i s e  trade-offs and contours .- The FAR-36 noise standards d i c t a t e  a maximum 
EPNL l i m i t  a t  the s ide l ine ,  flyover, and approach noise measuring s t a t ions  fo r  air- 
planes as a function of gross weight. However, trade-offs are allowed among the  
three noise components. The ru le  is as follows: The sum of the traded EPNL's cannot 
be greater  than 3 dB; no more than 2 dB may be traded from any one component; and the 
t o t a l  noise l eve l  reductions i n  the selected component or components must be traded 
( o f f s e t )  by equal addi t ions i n  the remaining component or  components. The traded 
noise leve l  is the highest  component noise l eve l  a f t e r  the t rades  a re  completed. 

Figure 6 presents,  f o r  the  two methods of ca lcu la t ing  lateral at tenuat ion,  t h e  
t raded jet noise leve ls  fo r  standard takeoff procedure I and advanced takeoff pro- 
cedure 111, with standard procedures used f o r  landing approach. With the  SAE lateral 
at tenuat ion method, traded j e t  noise leve ls  fo r  standard takeoff procedures and 
advanced takeoff procedure III w e r e  105.7 and 103.4 EPNdB, respectively.  Therefore, 
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i f  j e t  noise is considered representat ive of the total  noise, it appears that a 
supersonic t ranspor t  could achieve the noise leve ls  required by FAR-36, stage 2. 

A noise contour represents  the boundary of the area enclosing e f f ec t ive  per- 
ceived noise levels equal to  or greater than the spec i f ied  contour level .  N o i s e  
contours were determined f o r  the takeoffs  and landings simulated during the present  
study i n  order to ind ica t e  the noise-reduction advantages of using operat ional  pro- 
cedures other than standard. The areas of the ca lcu la ted  contours are indicated i n  
t ab le  IV and takeoff EPNL contour p lo t s  are presented i n  f igu re  7 f o r  standard pro- 
cedure I and advanced procedure 111. The noise contour areas, which w e r e  predicted 
by the ANOPP program, are based on je t  noise only and the SAE lateral a t tenuat ion  
method f o r  ca l cu la t ing  s ide l ine  noise. 

A s  indicated i n  t ab le  IV ,  advanced takeoff procedures I11 and I V  reduced the 
104 EPNdB contour areas of the takeoff standard procedure I by approximately 50 per- 
cent. Table I V  also indica tes  that the dece lera t ing  approach reduced the 96 EPNdB 
contour area of the standard approach by more than 70 percent.  However, contour 
areas are very sens i t i ve  t o  noise l eve l  predict ion errors. For example, an e r r o r  
of 2 dB i n  the predict ion of an EPNL contour of 110 dl3 would r e s u l t  i n  a 46-percent 
e r r o r  i n  contour area. Since the same method (ANOPP) w a s  used fo r  pred ic t ing  the 
noise leve ls  f o r  the standard and advanced procedures, it is believed t h a t  the 
d i f fe rence  i n  noise contour areas r e f l e c t  the r e l a t i v e  benef i t s  of advanced operating 
procedures i n  reducing the e f f ec t ive  perceived noise leve ls  i n  the a i r p o r t  community. 

F l igh t  Safety 

In order t o  evaluate  the e f f e c t  of the advanced procedures on f l i g h t  s a fe ty ,  an  
outboard engine w a s  f a i l e d  a t  various locat ions during both takeoff and landing. It 
w a s  the opinion of the engineer test p i l o t  t h a t  the advanced procedures posed no 
sa fe ty  problems. In  addi t ion,  the test r e s u l t s  indicated that f o r  an engine f a i l u r e  
above a speed of 230 knots ( I A S ) ,  one could have sa fe ly  chosen to continue to  follow 
the noise-abatement f l i g h t  p r o f i l e  instead of following a f l i g h t  p r o f i l e  d i c t a t ed  by 
an emergency s i tua t ion .  This r e s u l t  w a s  a t t r i b u t e d  t o  the excess climb t h r u s t  
ava i lab le  on -the simulated t ransport .  

Economic Characteristics 

An a i r l i n e  evaluates  the economic v i a b i l i t y  of any a i r c r a f t  which it considers  
f o r  incorporation i n t o  i ts  f l e e t .  D i r e c t  and to ta l  operat ing costs are important 
parameters i n  determining the profit-making capabi l i ty .  Fuel cost is the l a r g e s t  
s ing le  f ac to r  i n  the to t a l  operat ing costs for a p a r t i c u l a r  mission. 

Fuel usage f o r  the subject  configuration w a s  determined by use of an improved 
version of the computer program discussed i n  reference 19. 
cha rac t e r i s t i c s ,  propulsion, and weight data w e r e  required as input  to the program. 
The primary c ru i se  leg w a s  flown a t  the a l t i t u d e  f o r  best Breguet range factor .  Fuel 
reserves w e r e  based on the requirements of reference 26. A matrix of hold a l t i t u d e s  
and Mach numbers w e r e  evaluated to  determine an optimum hold condition. The r e s u l t s  
of the analysis  ind ica te  t h a t  the best hold condition w a s  a t  M = 0.8 a t  10-km 
( 3 2  849-ft) a l t i t ude .  Subsonic c ru i se  t o  the a l t e r n a t e  a i rport  w a s  done a t  the 
a l t i t u d e  and speed t h a t  resu l ted  i n  the b e s t  Breguet fac tor .  A mission p r o f i l e  and 
the  f u e l  weights associated with each segment are shown i n  f igu re  8. The block f u e l  
used for the 8191-km (4423-n.mi.) mission w a s  1.137 MN (255 595 l b f ) .  Seat-kilometers 
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per l i ter  (seat-naut ical  miles per gal lon) ,  which is an indicat ion of f u e l  eff ic iency,  
w a s  16.4 (33 .6 )  f o r  the subject  configuration. 

D i r e c t  operating c o s t  was calculated by using the Air Transport Association 
method described i n  reference 27, and the ind i r ec t  operating cos t  w a s  calculated i n  
accordance with the method described i n  reference 28. D i r e c t  operating cost is 
made up of the following elements: c r e w ,  fuel ,  insurance, maintenance, and 
depreciation. Ind i r ec t  operating cost includes general  and administrative,  landing 
fees  and servicing,  cabin at tendants ,  food, passenger handling, and advertising. 
Total  operating cost is the sum of the d i r e c t  and i n d i r e c t  operating costs ,  Table v 
presents the input  fac tors  used t o  ca lcu la te  these costs .  The cos t  f igures  are i n  
1980 do l l a r s  except f o r  fuel.  The f u e l  cos t  of 53 cents/L (2.00 dol la rs /ga l )  is 
based on 26.5 cents/L ( 1  -00 dol la r /ga l )  f o r  a 1980 base and the cos t  is escalated 
a t  an assumed rate of 3.5 percent/year above i n f l a t i o n  t o  the year 2000. It should 
a l so  be noted t h a t  the airframe and engine cos ts  are  based on a production run of 
300 a i r c r a f t .  

Direct and t o t a l  operating costs as a function of range are shown i n  f igures  9 
and I O ,  respectively,  fo r  load fac tors  of 60 percent and 100 percent. The amount of 
d i r e c t  operating cos ts  applicable t o  f u e l  cos t  only is shown i n  f igure 9. For a f u e l  
pr ice  of 53 cents/L (2.00 dol la rs /ga l )  and a load fac tor  of 100 percent, f u e l  amounts 
t o  approximately 84 percent of the d i r e c t  operating cost .  A t o t a l  operating cos t  of 
approximately 5.5 cents/passenger-km ( I O  cents/passenger-n.mi.1 w a s  predicted f o r  the 
design range of 8.19 m (4423 n.mi. ) and a load fac tor  of 100 percent. This leve l  of 
t o t a l  operating cos t  is i n  agreement with predictions made i n  reference 29. 

Total operating cos t  does not include the i n t e r e s t  paid on funds necessary t o  
purchase the a i r c r a f t .  A loan of 70 percent of the c o s t  of the airplane a t  12 per- 
cent  i n t e r e s t  amortized over 16 years w a s  assumed and t o t a l  cost, which is the sum of 
d i r e c t  and ind i r ec t  operating cos ts  plus i n t e r e s t ,  w a s  calculated.  Sens i t iv i ty  of 
the t o t a l  cos t  t o  var ia t ions i n  f u e l  cos t  and hours of u t i l i z a t i o n  fo r  the mission 
range of 8.19 rJIm (4423 n.mi.) is shown i n  f igure  1 1 .  The u t i l i z a t i o n  input  used t o  
develop the operating cos ts  shown i n  the previous f igures  was 12 hours/day. It can 
be seen tha: t o t a l  cos t  is much more sens i t i ve  t o  f u e l  p r i ce  than it is t o  
u t i l i za t ion .  

CONCLUDING REMARKS 

Noise and economic cha rac t e r i s t i c s  w e r e  obtained f o r  an advanced supersonic 
t ranspor t  t h a t  u t i l i z e d  wing-body blending, a double-bypass variable-cycle engine, 
superp las t ica l ly  formed and diffusion-bonded titanium i n  both primary and secondary 
s t ruc tures ,  and an a l t e rna t ive  i n t e r i o r  arrangement that provides increased sea t ing  
capacity. The study configuration has a range of 8.19 Mm (4423 n,mi,) with 290 pas- 
sengers a t  a c r u i s e  Mach number of 2.62. Principal  design cha rac t e r i s t i c s  were a 
takeoff gross weight of 2.85 MN (640 000 l b f ) ,  a thrust-weight r a t i o  of 0.30, and a 
wing loading of 3.64 kPa (76 l b f / f t 2 )  . 
c ru i se  was 9.23. 

The average operating l i f t -drag  r a t i o  during 

A p i lo ted  simulation study w a s  conducted on this configuration i n  order t o  
develop and evaluate operational procedures t h a t  have the po ten t i a l  t o  reduce 
airport-community noise during both takeoff and landing. One advanced takeoff 
procedure resul ted i n  reductions of approximately 3 EPNdB i n  flyover j e t  noise and 
2 EPNdB i n  s ide l ine  j e t  noise compared with the noise leve ls  fo r  a standard takeoff 
procedure. A decelerat ing approach speed resul ted i n  a reduction of 2.5 EPNdB i n  
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approach noise compared with the noise l eve l  fo r  a constant approach speed. u t i l i z i n g  
a standard landing approach procedure, traded je t  noise leve ls  of 105.7 and 103.4 EPNdB 
w e r e  obtained with standard and advanced takeoff operat ional  procedures, respectively.  
These r e s u l t s  w e r e  obtained with a new SAE method f o r  predict ing lateral at tenuat ion which 
resul ted i n  s ide l ine  noise leve ls  4 t o  6 EPNdB l o w e r  than those predicted by the standard 
Chien-Soroka method. Therefore, i f  j e t  noise is considered representative of t o t a l  noise, 
it appears t h a t  a supersonic t ransport  could achieve the noise levels  required f o r  
subsonic a i rplanes by Federal Aviation Regulation, p a r t  36, stage 2. 

The configuration was predicted to  have a f u e l  e f f ic iency  of 16.4 seat-km/L 
(33.6 seat-n.mi./gal). For a f u e l  pr ice  of 53 cents/L (2.00 dol la rs /ga l ) ,  fue l  amounted 
t o  approximately 84 percent of the d i r e c t  operating cost .  
approximately 5 .5 cents/passenger-km (1 0 cents/passenger-n.mi . ) w a s  predicted f o r  the 
design range and a load fac tor  of 100 percent. 

A t o t a l  operating cos t  of 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
July 29, 1982 
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TABLE 1.- AIRCRAFT CHARACTERISTICS 

Takeoff gross weight. kN ( l b f )  .................................... 2846.86 (640 000) 

Operating empty we’ight. kN ( l b f )  .................................. 1236.85 (278 054) 

Payload : 
Passengers (290) .  k N  ( l b f )  ........................................ 212.85 (47 850) 
Passenger baggage. kN ( l b f )  ........................................ 56.76 (12 760) 

Wing reference area. m2 ( f t 2 )  ......................................... 
Aspect r a t i o  based on wing reference area ....................................... 1.9  

Leading-edge sweep. deg ........................................ 74.0,  70.8,  and 60.0 

Ins ta l led  thrust-weight r a t i o  .................................................. 0.30 

Wing loading. kPa ( l b f / f t 2 )  ............................................. 3.63 (75.8)  

Sea-level-statica i n s t a l l e d  t h r u s t  per engine. kN ( lbf  1 .............. 21 3.5 (48 000) 

aStandard + 1 0 ° C  day . 
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TABLE 111.- EFFECTIVE PERCEIVED NOISE LEVELS FOR VARIOUS TAKEOFF PROCEDURES 

Jet only 

110.5 

110.5 

110.6 

110 e 6  

109.3 

108.5 

Procedure 

A l l  sources 

a107.5 

a106.7 

a107.6 

a106.6 

a105.6 

a104.0 

Standard I 

Standard I1 

Advanced I 

Advanced I1 

Advanced I11 

Advanced I V  

Flyover EPNdB 

A l l  sources 

110.3 

112.4 

a107.8 

110.3 

109.1 

111.2 

Jet only 

a107.7 

109.7 

a104. 1 

a106.3 

a104.8 

a106.4 

S ide l ine  EPNdB 

Chien-Soroka I SAE 

A l l  sources 

111.6 

111.8 

111.9 

111.8 

111.2 

110.3 

Jet only 

%eets takeoff FAR-36, stage-2 requirement ( re f .  21). 
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TABLE IV.- EFFECT OF PILOTING PROCEDURE ON NOISE CONTOURS 

EPNL 
Contour, 

dB 

E Jet noise  only] 

Area of contour 

2 km2 n.mi .  

I 

108 
104 

Procedure 

3 -40 
5.18 

Takeoff 

Standard: cons tan t  speed and g l ide  angle ... 

Standard I .... b............................... 

100 

Standard I1 ................................... 

on constant g l ide  angle ... . .. . 

Advanced I .................................. 

100 
96 

Advanced I1 ................................. 
Advanced I11 ................................ 
Advanced IV .................................... 

108 
104 

108 
104 

108 
104 

3.43 
8.95 

3 e40 
5.87 

3.22 
4.94 

108 
104 

2.92 
4.56 

2.81 
lo8 104 I 4.29 

1.00 
2.61 

0.99 
1.71 

0.94 
1 e 4 4  

0.99 
1-51 

0.85 
1.33 

0.82 
1.25 

96 

Decelerating: V = 200 to  156 knots (IAS) 

0 a 285 

0.035 
0.284 

0.083 
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TABLE V . . DIRECT-OPERATING- COST AND INDIREC'F-  OPERATING- COST INPUT FACTORS 

[1980 cos ts  (except f u e l ) ]  

Direct-operating-cost inputs  : 
Fl ight  p r o f i l e  .............................................. In te rna t iona l  with no 

subsonic c ru ise  l e g  
Aircraf t  economic l ife.  y r  ................................................... 16 
Uti l iza t ion .  hr/yr ........................................................... 4380 
Aircraf t  salvage Value. percent of a i r c r a f t  

cos t  including spares ...................................................... 15.0 
Insurance cost. percent of i n i t i a l  a i r c r a f t  cost /yr  .......................... 0 .5  
I n t e r e s t  rate. percent/yr ................................................... 12.00 
Labor (maintenance) rate. do l l a r s /h r  ........................................ 13.00 
Overhead (maintenance burden) rate. dol la rs /hr  ................... 2.0 x Labor r a t e  
Ground maneuver t i m e .  min/flight ............................................... 10 
Passenger weight. including baggage. N ( l b )  ............................. 930 (209) 
Cargo. N ( l b )  ........................................................ Baggage only 
Configuration layout: ................................................. All  t o u r i s t  
Cabin at tendants  ....................................................... 1/40 s e a t s  
Fuel cost. Jet A. cents/L (dol la rs /ga l )  ................................ 53 (2 .00)  
Airframe spares. percent of airframe cost  .................................... 6 . 0  
Engine spares. percent of t o t a l  engine cost  .................................. 30.0 
Nonrevenue fac tor .  f u e l  and maintenance. percent ............................. 2.0 
Airframe cost. a dolLars/N (do l l a r s / lb )  ................................... 90 (400)  
Engine cost .  a dol lars /N (do l l a r s / lb )  .................................... 108 (480)  

Indirect-operating-cost coef f ic ien ts :  
K1.  loca l  plus system ...................................................... 
K3. cabin at tendants  ....................................................... 
K5. passenger handling ..................................................... 
K7. other  services ......................................................... 
Kg. general and adminis t ra t ive ............................................. 

K ~ .  a i rpo r t  control  ........................................................ 
Kqp food ................................................................... 
K6. cargo handling ......................................................... 
K8. f r e i g h t  commission ..................................................... 

8.62 
115.22 
64.51 

0 -86  
24 49 

225.87 
0.0128 
0.0174 
0.0373 

~ ~ ~~ ~ ~~ 

aBased on production run of 300 a i r c r a f t  including development cost  . 

16 



c 
W@ 

1 8 
Y m 
9 

I 

T 

. 
h 

c, 
a, 
a, 
2 
m 
k 
a, 
c, 
a, E 
E: 
-4 

a, 
k 
Id 
m 
c 
0 
-4 m 
E: 
a, 

3 
k 
Id 
a, 
E: 
-4 
IJ 

d 

$ 

8 

0 
.4 
c, 
Id 
k 

-4 
4-1 
c 

4-1 
0 
m u 
-4 
4J m 
-4 
k 
a, 
4J u 
id 
k 
(d 

E 
u 
-4 
k 
c, 

8 

8 

a, tn 
4 
Id 
k 
a, 

! 

$ 

r 

a, 
k 

4 
k 

17 



( a )  Langley Visual/Motion Simulator. 

L- 78- 7794 
(b) Instrument panel. 

Figure 2.- Langley Visual/Motion Simulator and instrument panel display.  
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Figure 5.- Concluded. 
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820.02 kN (184349 lbf 1 
Cruise at optimum altitude or climb ceiling 

(M= 2.62) 

20.2 km (66 375ft 1 
End cruise altitude 17 5 km I57375 f t )  

Begin cruise altitude 
274 3 kN (61 655 Ibf 1 

Climb, accelerate 1769 kN (3977 Ibf1 
Descend decelerate 8.59 kN (1931 Ibf 1 

10-minute taxi  

16.38 k N  (3683 lbf) 
1-minute takeoff 

Trip range 8.187 Mm (1120 n.mi) 
Trip fuel 1.112 MN (249 981 Ibf 1 

Block fuel 1.137 MN (255 595 Ibf 1 

Block time 214 mn 

Note- CAB range= trip range minus traffic allowance as specified for supersonic aircraft 

(a) Primary mission. 

85 35 kN (19185 Ibf) M = 0.84) 
Cruise at best altitude and speed 56 71 kN (12 747 Ibf) 

30 minute hold at M-0.8 
10 km (32 819 f t )  

56.43 kN (12 683 Ibf 1 

463 km (250 n.mi.1 5.01 kN (1126 Ibf 1 
Missed approach 

To alternate airport 
85.35 kN (19 185 Ibf) 

(b) Reserve allowance mission. 

Figure 8.- Mission profile and fuel weights associated with each segment. 

26 



Range, n.mi. 
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Figure 9.- Fuel and d i r e c t  operating costs as function 
of range and passenger load fac tor .  
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Figure 10.- Total operating cost as function of range 
and passenger load factor. 
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5. Supplementary Notes 

6. Abstract 

Noise and economic character is t ics  w e r e  obtained for an advanced supersonic transport 
concept that u t i l i zed  wing-body blending, a double-bypass variable-cycle engine, 
superplas t i ca l ly  formed and d i f  fusion-bonded titanium i n  both the primary and second- 
ary structures,  and an al ternat ive in t e r io r  arrangement that pxovides increased seat-  
ing capacity. The configuration has a cruise Mach number of 2.62, provisions for  
290 passengers, a mission range of 8.19 Mm (4423 n.mi.1, and an average operating 
cruise  l i f t -d rag  r a t i o  of 9.23. Advanced operating procedures, which have the 
potent ia l  to  reduce airport-community noise, were explored by using a simulator. 
Traded jet  noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and 
advanced takeoff operational procedures, respectively . A new method for  predicting 
lateral httenuation w a s  u t i l i zed  i n  obtaining these je t  noise levels. Therefore, i f  
jet noise is considered representative of t o t a l  noise, it appears that a supersonic 
transport  could achieve the noise levels required by Federal Aviation Regulations, 
par t  36, stage 2. Direct and total  operating costs w e r e  calculated. Total operating 
costs of approximately 5.5 cents/passenger-km (1 0 cents/passenger-nomi. 1 and a fue l  
efficiency of 16.4 seat-km/L (33.6 seat-n.mi./gal) w e r e  predicted fo r  the design 
range and load factor of 100 percent. 
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